Disclaimer

These materials are for information purposes only and do not constitute or form part of an offer or invitation to sell or issue or the solicitation of an offer or invitation to buy or subscribe for securities of InnoCare Pharma Limited (the “Company”) or any of its holding company or subsidiaries in any jurisdiction. No part of these materials shall form the basis of or be relied upon in connection with any contract or commitment whatsoever.

The information or opinions contained in these materials has not been independently verified. No representation or warranty, whether expressed or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of such information or opinions contained herein. The information and opinions contained in these materials are provided as of the date of the presentation, are subject to change without notice and will not be updated or otherwise revised to reflect any developments, which may occur after the date of the presentation. The Company, any of its affiliates, directors, supervisors, senior managers, officers, employees, advisers and their respective representatives shall not have any liability whatsoever (in negligence or otherwise) for any loss howsoever arising from or in reliance upon any information contained or presented in or derived from these materials or otherwise arising in connection with these materials.

These materials contain statements that reflect the Company’s current beliefs and expectations about the future as of the respective dates indicated herein. These forward-looking statements are based on a number of assumptions about the Company’s operations and businesses and on factors beyond the Company’s control, and are subject to significant risks and uncertainties, and, accordingly, the actual results may differ materially from these forward-looking statements. You should not place undue reliance on any of such forward-looking information. The Company assumes no obligation to update or otherwise revise these forward-looking statements for new information, events or circumstances that emerge subsequent to such dates.
Our Vision

To Become a Global Biopharmaceutical Leader that Develops and Delivers Innovative Therapies for Patients Worldwide

Our Therapeutic Focus

Oncology

Autoimmune
InnoCare at a Glance

1. Experienced founders and strong management team with an excellent track record

2. Fully integrated biopharmaceutical platform with robust in-house R&D capabilities

3. Proven track record in clinical development, business development and commercialization

4. Strategically focused pipeline of potential best/first-in-class targeted therapies
 - Potential best-in-class BTKi Orelabrutinib launched in China
 - Orelabrutinib in global Phase II trial for MS and partnered with Biogen, also in phase II for SLE and ITP
 - In-licensed Tafasitamab – best available therapy for r/r DLBCL
 - Second-generation FGFR & TRK inhibitors for solid tumors
 - Abundant early stage NMEs including BCL-2, SHP-2, KRAS, TYK2 inhibitors, and E-3 ligase

5. Culture of innovation, efficiency, and excellence
Major Achievements in the Period of Jan – Aug 2021

Commercialization
- Orelabrutinib reported sales of **RMB101 million** in 1H2021
- Rapid Market Penetration
- Commercial team expansion
- NRDL process initiated

Business Development
- **Out-licensing**: Orelabrutinib in MS with Biogen
- **In-licensing**: Tafasitamab in hematology and oncology with Incyte

Research & Development
- 7 Clinical stage assets
- 5 Registrational trials ongoing
- 4 in-house developed NMEs disclosed
- 3 Biological molecules internalized

Capital Market
- Kicked off **STAR Board** Listing application process
- Raised approximately **US$393 million** through a new shares placement with **Hillhouse and Vivo** in Feb 2021

Production Capacity
- Started tech-transfer of Orelabrutinib production in Guangzhou plant
- Planning construction of Beijing biological drug R&D and production facility

Talent Expansion
- **CMO** - Dr. Sean Zhang
- **COO** - Dr. Nan Gao
- **Biology VP** - Dr. Davy Ouyang
- Staff expanded to 600+
Commercialization
Strong Uptake of Core Product - Orelabrutinib

- Sales reached **RMB101M** in less than six months
- An experienced in-house team effectively penetrated the market:
 - Penetrated 230+ Cities
 - Covered 500+ Hospitals
 - Educated 4,000+ Doctors
- Recommended use by CSCO Diagnosis and Treatment Guidelines for *r/r* CLL/SLL, *r/r* MCL, *r/r* DLBCL and PCNSL
- Included in 19 local government supported/guided commercial insurance
- Actively pursuing Orelabrutinib’s inclusion in NRDL
- Well prepared for post-NRDL era:
 - Expanding sales and marketing team
 - Finishing provincial listing (挂网) and working on hospital entry (进院) process
 - Clinical trials in expanding indications

Indications:
- R/R Mantle Cell Lymphoma ("MCL")
- R/R Chronic Lymphocytic Leukemia/Small Cell leukemia ("CLL/SLL")

Records Setting:
- From FPI to NDA filing: 1.5 years
- From FPI to NDA approval: 2.5 years
Business Development
Out-licensed Orelabrutinib in MS with Biogen

A Significant Milestone for InnoCare

- A jump-start step to globalization: out-licensed self-developed molecule to a global pharmaceutical company, the largest small molecule deal in terms of upfront payment
- A major validation of Orelabrutinib's potential for MS and auto-immune disease treatment
- Well positioned to maximize Orelabrutinib's value in MS with the global leading player partnership
- A milestone deal that demonstrated our BD capability and will facilitate our future BD opportunities
- Additional financial prowess and operational flexibility for future growth

Tiered
Low to High teens on potential future net sales

Potential
US$812.5 million

Upfront
Payment
US$125 million

Oncology
Exclusive worldwide rights

MS
Exclusive worldwide rights

Auto-immune
Certain diseases in Greater China

Auto-immune
Certain diseases outside China

Royalties
Orelabrutinib has the potential to act in both CNS and periphery for demyelinating diseases. Its high target selectivity, good PK profile and BBB penetration capability presents a promising option for treating MS.

Note: This slide is compiled from different clinical studies at different time point, with difference in trial design and patient population. No head to head trials have been conducted. Not published data, maybe inaccurate.
Business Development

In-licensed Tafasitamab in Hema-oncology with Incyte

Tafacitamab - A differentiated CD-19 Antibody

Comprehensive Clinical Program

- Approved in the U.S. and Europe for r/r DLBCL
- In Phase III studies for 1L DLBCL, r/r FL and more by Incyte/MorphoSys
- Aggressively pursuing the best possible regulatory approval path in Greater China

Mutually Beneficial Deal Terms

- Exclusive Rights in the Greater China
- Upfront US$35m
- Potential Milestone US$82.5m
- Tiered Royalties

Strategically important for InnoCare

- MONJUVI (Tafasitamab-cxix) in combination with lenalidomide is the first and only FDA-approved treatment for 2nd line DLBCL
- Tafasitamab offers numerous possibility and flexibility in combination with Orelabrutinib and our other assets for the treatment of B-cell malignancy
- An important asset that will facilitate our strategy of becoming a leading player in hema-oncology in China
- Another demonstration of our BD capability and efficiency

Note: Transaction is effective immediately upon the execution of the collaboration agreement
Business Development

Tafasitamab: Best r/r DLBCL Drug in Market Today

Substantial DLBCL Market Size in China

<table>
<thead>
<tr>
<th>Year</th>
<th>Billion RMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>10.4</td>
</tr>
<tr>
<td>2024E</td>
<td>31.3</td>
</tr>
<tr>
<td>2030E</td>
<td>60.9</td>
</tr>
</tbody>
</table>

Source: Frost & Sullivan Analysis

Best-in-Class CD19 antibody

- Engineered Fc domain and better ADCC and ADCP
- Solid data in the Phase II L-MIND study in r/r DLBCL
- Benign safety profile

Competitive Landscape: Selected Novel Therapy in r/r DLBCL

<table>
<thead>
<tr>
<th>Company</th>
<th>Target</th>
<th>Therapy</th>
<th>Phase</th>
<th>ORR (%)</th>
<th>CR (%)</th>
<th>mDOR (m)</th>
<th>mPFS (m)</th>
<th>mOS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incyte/InnoCare</td>
<td>CD19</td>
<td>Tafasitamab + Lenalidomide</td>
<td>Approved ex-China</td>
<td>57.5</td>
<td>40</td>
<td>43.9</td>
<td>11.6</td>
<td>33.5</td>
</tr>
<tr>
<td>ADC Therapeutics</td>
<td>CD19 ADC</td>
<td>Loncastuximab tesirine</td>
<td>II</td>
<td>59</td>
<td>41</td>
<td>4.8</td>
<td>5.5</td>
<td>11.6</td>
</tr>
<tr>
<td>Roche</td>
<td>CD79b ADC</td>
<td>Polatuzumab vedotin + BR vs BR</td>
<td>II</td>
<td>45 vs 18</td>
<td>40 vs 18</td>
<td>12.6 vs 7.7</td>
<td>9.5 vs 3.7</td>
<td>12.4 vs 4.7</td>
</tr>
<tr>
<td>Amgen/Beigene</td>
<td>CD19/CD3</td>
<td>Blinatumomab</td>
<td>II</td>
<td>43</td>
<td>19</td>
<td>11.6</td>
<td>3.7</td>
<td>5.0</td>
</tr>
<tr>
<td>Regeneron/Zai Lab</td>
<td>CD20/CD3</td>
<td>Mosunetuzumab</td>
<td>Ib</td>
<td>35</td>
<td>19</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Roche</td>
<td>CD20/CD3</td>
<td>Glofitamab</td>
<td>Ib</td>
<td>38</td>
<td>31</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Others</td>
<td>BCL2</td>
<td>Venetoclax</td>
<td>I</td>
<td>18</td>
<td>12</td>
<td>N/A</td>
<td>1.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Source: Frost & Sullivan Analysis

Note 1: antibody-dependent cell-mediated cytotoxicity (ADCC)
Note 2: antibody-dependent cellular phagocytosis (ADCP)
Note 3: autologous stem cell transplant (ASCT)
Research and Development
Product Pipeline – Liquid Cancer

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target</th>
<th>Indication(s)</th>
<th>Worldwide Rights</th>
<th>Pre-clinical Development</th>
<th>IND</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Launched</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r/r CLL/SLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-022/</td>
<td>BTK</td>
<td>r/r MCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>r/r MZL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>r/r WM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1L: CLL/SLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1L: MCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>r/r MCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>r/r CNSL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>r/r non-GCB DLBCL (double mutation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combo w/ MIL-62 (basket)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-B04/</td>
<td>CD19</td>
<td>DLBCL/Hematology</td>
<td>China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tafasitamab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-B02</td>
<td>CD3 x CD20</td>
<td>Hematology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-248</td>
<td>BCL-2</td>
<td>Hematology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-490</td>
<td>E3 ligase</td>
<td>Hematology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **RegISTRATIONAL TRIALS**
- **Clinical Stage**
- **Pre-clinical Stage**

- NDA approved: 25 Dec 2020
- US Development Status
- IND accepted in July 2021
- IND expected in first half of 2022
Research and Development
Product Pipeline – Solid Tumors and Autoimmune Diseases

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target</th>
<th>Indication(s)</th>
<th>Worldwide Rights</th>
<th>Pre-clinical Development</th>
<th>IND</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Launched</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP-192/</td>
<td>pan-FGFR</td>
<td>Cholangiocarcinoma</td>
<td>US Development Status</td>
<td>US Development Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gunagratinib</td>
<td></td>
<td>Urothelial cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pan-FGFR (basket)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-105</td>
<td>FGFR4</td>
<td>HCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-723</td>
<td>pan-TRK</td>
<td>NTRK fusion-positive cancers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-033</td>
<td>VEGFR, DDR1</td>
<td>Solid tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-915</td>
<td>KRAS</td>
<td>Solid tumors</td>
<td>IND expected in second half of 2022</td>
<td>US Development Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-189</td>
<td>SHP2</td>
<td>Solid tumors</td>
<td>IND accepted in July 2021</td>
<td>US Development Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-B03</td>
<td>IL-15</td>
<td>Solid tumors</td>
<td>IND expected in second half of 2022</td>
<td>US Development Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTK</td>
<td>ICP-022/</td>
<td>SLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orelabrutinib</td>
<td></td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-332</td>
<td>TYK2 – JH1</td>
<td>Autoimmune diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-488</td>
<td>TYK2 – JH2</td>
<td>Autoimmune diseases</td>
<td>IND expected in second half of 2021</td>
<td>US Development Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-490</td>
<td>E3 ligase</td>
<td>Autoimmune diseases</td>
<td>IND expected in first half of 2022</td>
<td>US Development Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solid Tumors

Autoimmune diseases

- **ICP-192/ Gunagratinib**
 - pan-FGFR: Cholangiocarcinoma, Urothelial cancer
 - pan-FGFR (basket): US Development Status

- **ICP-105**
 - FGFR4: HCC

- **ICP-723**
 - pan-TRK: NTRK fusion-positive cancers

- **ICP-033**
 - VEGFR, DDR1: Solid tumors

- **ICP-915**
 - KRAS: Solid tumors

- **ICP-189**
 - SHP2: Solid tumors

- **ICP-B03**
 - IL-15: Solid tumors

- **BTK**
 - ICP-022/Orelabrutinib: SLE

- **ICP-332**
 - TYK2 – JH1: Autoimmune diseases

- **ICP-488**
 - TYK2 – JH2: Autoimmune diseases

- **ICP-490**
 - E3 ligase: Autoimmune diseases

Registrational trials
- **Clinical Stage**
- **Pre-clinical Stage**
Next 12 Months – A Busy and Eventful Period

Facilities
- Start Orelabrutinib in-house production in 1H2022
- Start the construction of Beijing R&D center & large molecule facility

Orelabrutinib
- Submit r/r WM NDA in 1H2022
- Submit r/r MZL NDA in 1H2022
- Submit r/r MCL NDA in U.S. in 2H2022
- Finish SLE Phase II trial publish data in 1Q2022
- Initiate ITP patient enrollment in 2H2021
- Complete patient enrollment for MS in mid 2022

Capital Market
- STAR Board Listing 1H2022

Other Clinical Assets
- **ICP-192**
 - Initiate iCCA registrational trial
 - Complete the Phase I clinical study in the U.S.
- **ICP-723**
 - Start a NTRK mutation-based registrational trial
 - Initiate patient enrollment in the U.S.
- **ICP-332**: complete Phase I trial
- **Tafasitamab**: approval in HK/Big Bay Area; Initiate registrational trial in China
- Have 2-3 NMEs into phase I
- Submit 3-4 INDs, Select 2-3 new PCCs
Growth Strategies

1. Building a leading hema-oncology franchise with Orelabrutinib & Tafasitamab as backbone therapies
2. Develop Orelabrutinib and other candidates for autoimmune diseases
3. Expand drug portfolio for solid tumors in China and worldwide
4. Establish biological R&D capability through internal and external efforts
5. Continue to expand pipeline through in-house discovery and business development
6. Develop Orelabrutinib in MS through partnership with Biogen
7. Continue to broaden global partnership of internal assets
Key Financials Updates for 1H2021

Revenue

<table>
<thead>
<tr>
<th></th>
<th>2020.6</th>
<th>2021.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RMB mm)</td>
<td>0.7</td>
<td>101.7</td>
</tr>
<tr>
<td>Revenue</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss for the Period

<table>
<thead>
<tr>
<th></th>
<th>2020.6</th>
<th>2021.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RMB mm)</td>
<td>(337)</td>
<td>(213)</td>
</tr>
</tbody>
</table>

Research and Development Costs

<table>
<thead>
<tr>
<th></th>
<th>2020.6</th>
<th>2021.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RMB mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>153</td>
<td>185</td>
</tr>
<tr>
<td>Employee Cost</td>
<td>Third Party Contracting Cost</td>
<td>Share-Based Compensation</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>37</td>
</tr>
<tr>
<td>Depreciation and Amortisation</td>
<td>Direct Clinical Trial Expenses</td>
<td>Others</td>
</tr>
<tr>
<td>32</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>58</td>
</tr>
</tbody>
</table>

Cash and Cash Equivalents

<table>
<thead>
<tr>
<th></th>
<th>31-Dec-2019</th>
<th>31-Dec-2020</th>
<th>30-Jun-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RMB mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,372</td>
<td>1,246</td>
<td>2,820</td>
<td>6,255</td>
</tr>
<tr>
<td>Cash and Cash Equivalents</td>
<td>Net Cash</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Cash balance = investments measured at fair value investments, cash and bank balance.
Net cash = cash balance – convertible loan – loans and borrowings – loans from a related party
Fully-integrated Biopharma Company

Drug Discovery
- All Products Developed In-house
 - 100+ research scientists
 - Beijing R&D center – 8,300 m²
 - Chemistry, biology and CMC labs
 - 800 m² AAALAC-like animal facility
 - Nanjing R&D center – 3,350 m²
 - A state-of-the-art solid-state research lab
 - Diagnostic and biology platform

Target Identification
- Protein Structure Aided Drug Design
 - Prof. Yigong Shi
 - Expertise in structure biology
 - Deep understanding of cancer biology
- Novel Target Identification
 - Prof. Zemin Zhang
 - Single cell sequencing platform
 - Big Data analysis

1 commercial product
- 7 clinical stage assets
- 5 IND approved
- 2 accepted INDs
- 3 biological molecules
 - Multiple at IND enabling stage

Clinical Development
- Unparalleled Clinical Execution
 - ~150 Clinical development personnel
 - All China trials managed in-house
 - 100+ Clinical sites initiated
 - ~20 trials ongoing
 - New offices in Beijing Kerry Center & Shanghai Qiantan

Manufacturing
- ~50,000 m² small molecule facility in Guangzhou
 - Completed in December 2020 and obtained GMP license
 - Comply with both Chinese and international GMP standards
 - ~130 employees
 - Started technology transfer of Orelabrutinib production
- ~100,000 m² R&D Center & Large Molecule facility in Beijing
 - Has completed conceptional design
 - The construction is expected to be completed in 2025

Commercialization
- ~170 member team actively promoting Orelabrutinib since Jan 2021
- Highly experienced and efficient sales team in hematology

Marketing Medical Sales Strategy Government Relations
Top-notch Executives & Advisors

Dr. Jasmine Cui
Co-founder and CEO
- 20+ years of experience in research and development and company management in the pharmaceutical industry
- Former CEO and CSO of BioDuro, a PPD Company
- Former Head of Early Development Team, Cardiovascular Diseases at Merck US
- Former Fellow at The Howard Hughes Medical Institute
- The 17th President of the Sino-American Pharmaceutical Professional Association (SAPA)

Prof. Yigong Shi
Co-founder, President of Scientific Advisory Board
- Elite Structural Biologist
- President and Founder of Westlake University
- Academician of the Chinese Academy of Sciences
- Foreign Associate of the National Academy of Sciences of the U.S. and European Molecular Biology Organization
- Professor of Tsinghua University and Princeton University

Dr. Sean Zhang
CMO
- 30+ years of experience in clinical development
- Hengrui Therapeutics Inc., Former CEO and Director
- GSK, Former senior medical director
- Fellow of the American College of Clinical Pharmacology (FCP)

Shaojing Tong
CFO
- UBS AG, Former Healthcare Equity Research Analyst
- Merrill Lynch Asia, Former Equity Research Analyst
- Mehta Partners LLC, Former Equity Research Analyst

Xiaodong Jin
CCO
- 20+ years of experience in product commercialization
- Sanofi (China), General Manager of Cardiovascular Business Unit
- Abbott China, General Manager of Abbott Diabetes Care and Head of Greater China Novartis Beijing, more than 13 years

Dr. Nan Gao
COO
- 25+ years experience in biotech and pharmaceutical project management and manufacturing
- Baxter Pan Asia Director and Production VP

Dr. Xiangyang Chen
CTO
- 20+ years of drug discovery experience
- BioDuro, Former Executive Director of Medicinal Chemistry
- Pfizer, Former Principal Scientist
- Albert Einstein College of Medicine, Former Postdoctoral Researcher

Dr. Sean Zhang
CMO
- 30+ years of experience in clinical development
- Hengrui Therapeutics Inc., Former CEO and Director
- GSK, Former senior medical director
- Fellow of the American College of Clinical Pharmacology (FCP)

Prof. Zemin Zhang
Scientific Advisory Board Member
- Professor at Peking University
- Former head of the bioinformatics division at Genentech Inc., USA

Prof. Zhanguo Li
Scientific Advisory Board Member
- World-class specialist in rheumatoid immunotherapy
- Director of the Clinical Immunology Center / Rheumatism Immunology Department at Peking University People’s Hospital

Prof. Arnold Levine
Scientific Advisory Board Member
- Professor emeritus at Institute of Advanced Study, Princeton
- US National Academy of Sciences member

James Deng
Sales & Marketing Advisor
- Global SVP & Greater China GM of Becton Dickinson
- Chairman of AdvanMed
- Former CEO and president of Novartis Pharmaceuticals China
Expanding Commercialization Team

An Experienced and Specialized Team

James Deng
Sales & Marketing Advisor
- Global SVP & Greater China GM of Becton Dickinson
- Chairman of AdvaMed
- Former CEO and president of Novartis Pharmaceuticals China

Yi Zhang
Sr. Director of Sales
- Former director of sales in China at Janssen
- Responsible for the sales of Imbruvica in China

Dr. Zhichao Si
Director of Marketing
- Former therapeutic area leader of hematology at Janssen
- Responsible for launching Imbruvica in China

Xiaodong Jin
Chief Commercial Officer
- Sanofi (China) , GM of Cardiovascular Business Unit
- Abbott China, GM of Abbott Diabetes Care and Head of Greater China
- Beijing Novartis, more than 13 years

Dr. Jinghua Chang
Director of Market Access
- Former Head of Marketing Access Strategy at Novartis
- Responsible for the marketing access strategy

Yue Ren
Director of Channel and Customer Management
- Former commercial strategy leader at Janssen
- Responsible for distributor management and channel optimization

Before Orelabrutinib Enters the NRDL
- 170+ sales and marketing team
- Covering 500+ Nationally Leading Hospitals

When Orelabrutinib Included in the NRDL
- ~230 sales and marketing team
- Covering 800+ Nationally Leading Hospitals
Manufacture & Production Capacity
World-class Manufacturing Facility

- Successfully obtained manufacturing license for the facility and complied with GMP Int’l standard
- Started tech-transfer process of Orelabrutinib production in May 2021

Guangzhou Subsidiary

- **130 Employees**

- **50,000m² Completed construction**
- **1 Billion Pill Capacity Annually**
- **+ 30,000m² Further expansion**

To Satisfy The Commercial Needs For At Least Next Five Years

<table>
<thead>
<tr>
<th>Present</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>...</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1H2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2H2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete an On-site Inspection by NMPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Covers The Entire Production Process

- Spray drying
- Dispensing
- Dry granulation
- Wet granulation and drying
- Blending
- Compression
- Capsule filling
- Coating and blister packaging
- Bottling
Key Products Highlight
Orelabrutinib (ICP-022) : Potential Best-in-class BTKi for B-cell Malignancies

Advantages and Highlights

1. **Improved Target Selectivity**
 - **Orelabrutinib**: Significant inhibition of only BTK by >90% and NO significant inhibition of other kinases
 - **Ibrutinib**: Significant inhibition of kinases other than BTK
 - **Acalabrutinib**:
 - **Zanubrutinib**

2. **Favorable PK/PD Profile and Better Target Occupancy**
 - The better bioavailability of Orelabrutinib tablet enables
 - **Once-daily** administration at low dosage
 - **Near 100% 24-hr** BTK occupancy in blood

3. **Improved Safety and Robust Efficacy Profile**

Orelabrutinib is a potential best-in-class BTKi

Our “Point-of-Differentiation”

- **Target Selectivity**
 - **Orelabrutinib**:
 - **Zanubrutinib**
 - **Acalabrutinib**
 - **Ibrutinib**

- **Safety**
 - **Orelabrutinib**
 - **Ibrutinib**

- **Once-daily**
Improved Target Selectivity

KINOMEscan dendrogram

- **Orelabrutinib**: At 1 μM against 456 kinases in a KINOMEscan, orelabrutinib shows significant inhibition of only BTK by >90% and demonstrates no significant inhibition of other kinases.

- **Ibrutinib**: At 1 μM concentration, ibrutinib inhibited (>90%) not only BTK but also over a dozen other kinases including EGFR, TEC and BMX.

- **Acalabrutinib**: At 1 μM concentration, acalabrutinib showed off-target activity.

- **Zanubrutinib**: At 1 μM concentration, zanubrutinib inhibited multiple kinases.

Orelabrutinib (ICP-022) : Potential Best-in-class BTKi for B-cell Malignancies (cont’d)

Favorable PK/PD Profile

Post-dosing plasma exposure profile

Orelabrutinib

- Good Bioavailability
- Dose Proportional
- Favorable T½
- Once Daily with Low Dose Level
- Low Variation

Abbreviations: SD = single dose; QD = once daily; BID = twice daily

Ibrutinib

- Approved clinical doses: 420 mg QD for CLL
- 560 mg QD for MCL

Acalabrutinib

- Approved clinical dose: 100 mg BID

Zanubrutinib

- Clinical trial dose: 160 mg BID

Lower bioavailability at their respective dosage compared to Orelabrutinib

Sources:
Orelabrutinib (ICP-022) : Potential Best-in-class BTKi for B-cell Malignancies (cont’d)

Better Target Occupancy

BTK occupancy

- **Near 100% occupancy for 24 hrs** at ≥50 mg
- NO decrease in BTK occupancy between 4 and 24 hrs post-dosing

Orelabrutinib

Ibrutinib

- <80% occupancy at 420 mg
- Decrease in BTK occupancy between 4 and 24 hrs post-dosing

Acalabrutinib

- <90% occupancy at 100mg BID
- Decrease in BTK occupancy between 4 and 24 hrs post-dosing

Zanubrutinib

- Decrease in BTK occupancy between 4 and 24 hrs post-dosing

Abbreviations: SAD = single ascending dose; MAD = multiple ascending dose

Sources: "Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia" by Byrd J.C., et al. The New England Journal of Medicine, 2016; 374(4):323-32. doi: 10.1056/NEJMoa1509981; Company filings
Orelabrutinib (ICP-022) : Potential Best-in-class BTKi for B-cell Malignancies (cont’d)

- Improved Safety and Robust Efficacy Profile
- No severe AF case observed after 400+ patient dosed

Efficacy Profile

CLL/SLL

<table>
<thead>
<tr>
<th>Drug</th>
<th>IRC (ICP-CL-00103, N=80)</th>
<th>Ibrutinib CLL3002 (n=106)</th>
<th>Acalabrutinib ASCEND (n=155)</th>
<th>Zanubrutinib IRC (BGB-3111-205, N=91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Follow-up Time</td>
<td>25.6 months</td>
<td>17.8 months</td>
<td>16.1 months</td>
<td>15.1 months</td>
</tr>
<tr>
<td>ORR</td>
<td>93.9%</td>
<td>67.9%</td>
<td>81%</td>
<td>84.6%</td>
</tr>
<tr>
<td>CR / CRi</td>
<td>21.3%</td>
<td>3.8%</td>
<td>0</td>
<td>3.3%</td>
</tr>
<tr>
<td>PR</td>
<td>61.3%</td>
<td>50.0%</td>
<td>81%</td>
<td>59.3%</td>
</tr>
<tr>
<td>PR-L</td>
<td>11.3%</td>
<td>14.2%</td>
<td>7%</td>
<td>22.0%</td>
</tr>
</tbody>
</table>

MCL (N=106, median follow time of 23 months)

- 99 (87.9%) patients achieved ORR and 93.9% patients achieved disease control.
- CR rate, by conventional CT method, increased to 37.3% and it was expected a higher rate of in depth response may occur with prolonged treatment.
- The median PFS was 25.7 month and the median OS was not reached

Safety Profile

<table>
<thead>
<tr>
<th>Adverse events of special interest</th>
<th>Orelabrutinib N=304 (%)</th>
<th>Ibrutinib N=1,124 (%)</th>
<th>Acalabrutinib N=612 (%)</th>
<th>Zanubrutinib N=671 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3 or Grade 4 Atrial fibrillation</td>
<td>0.0%</td>
<td>4.0%</td>
<td>1.0%</td>
<td>0.6%</td>
</tr>
<tr>
<td>≥ Grade 3 Diarrhea</td>
<td>0.3%</td>
<td>39.0%</td>
<td>38.4%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Secondary malignancy</td>
<td>0.7%</td>
<td>10.0%</td>
<td>10.6%</td>
<td>7.9%</td>
</tr>
<tr>
<td>≥ Grade 3 Infection</td>
<td>12.8%</td>
<td>24.0%</td>
<td>18.0%</td>
<td>21.3%</td>
</tr>
</tbody>
</table>

Sources: Imbruvica Prescribing Information, Jan 2019
Pooled Analysis of Safety Data from Clinical Trials Evaluating Acalabrutinib Monotherapy in Hematologic Malignancies, John C. Byrd, et al., Blood, 2017; 130:4326
NDAA/BLA Multi-disciplinary Review and Evaluation, 21025K(C)1000, Center for Drug Evaluation and Research
Pooled Analysis of Safety Data from Monotherapy Studies of the Bruton Tyrosine Kinase (BTK) Inhibitor, Zanubrutinib (BGB-3111), in B-Cell Malignancies, S. Tam C., et al., European Hematology Association, Jun 15, 2019; 266776, PS1159
Presented by Wei Xu at ASH 2020.
"Safety Analysis of Four Randomized Controlled Studies of Ibrutinib in Patients with Chronic Lymphocytic or Mantle Cell Lymphoma" by Susan O’Brien, et al., Original Study, 2018; 18(10), 648-657, e15
Orelabrutinib (ICP-022): Potential Best-in-class BTKi for Multiple Sclerosis

Substantial MS Market Size

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2023E</th>
<th>2030E</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>16.0</td>
<td>21.6</td>
<td>33.5</td>
</tr>
<tr>
<td>China</td>
<td>6.8</td>
<td>8.6</td>
<td>13.4</td>
</tr>
<tr>
<td>ROW</td>
<td>0.2</td>
<td>0.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Diagnosed MS Patients Numbers in Ex-China Market

- More than 1/3 of U.S. patients and 1/2 of EU5 patients untreated

<table>
<thead>
<tr>
<th></th>
<th>Total US</th>
<th>Total EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>332</td>
<td>314</td>
</tr>
<tr>
<td>EU5</td>
<td>171</td>
<td>383</td>
</tr>
</tbody>
</table>

MS Sub-indications and Patients Percentage

- 85% PRMS/Benign
- 10% PPMS
- 5% RRMS

- 80% RRMS covert to SPMS

Source: Frost & Sullivan Analysis & Zhongtai Securities Research Report
Orelabrutinib (ICP-022): Potential Best-in-class BTKi for Multiple Sclerosis (cont’d)

Notes: 2019 sales exclude Ocrelizumab right’s revenue

Major MS Drugs 2020 Global Sales

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Company</th>
<th>Mechanism</th>
<th>Indication</th>
<th>2020 Global Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocrelizumab</td>
<td>Roche</td>
<td>Anti-CD20 mAb</td>
<td>1L RMS, PPMS</td>
<td>4,326</td>
</tr>
<tr>
<td>Dimethyl fumarate & diroximel fumarate</td>
<td>Biogen</td>
<td>Nuclear factor (erythroid derived 2) – like 2 pathway inhibitor</td>
<td>1L RMS</td>
<td>3,905</td>
</tr>
<tr>
<td>Fingolimod</td>
<td>Novartis</td>
<td>Shingosine1- phosphate inhibitor</td>
<td>2L RMS</td>
<td>3,003</td>
</tr>
<tr>
<td>Teriflunomide</td>
<td>Sanofi</td>
<td>Dihydroorotate dehydrogenase inhibitor</td>
<td>1L RMS</td>
<td>2,045</td>
</tr>
<tr>
<td>Natalizumab</td>
<td>Biogen</td>
<td>A4β1 integrin inhibitor</td>
<td>2L RRMS</td>
<td>1,946</td>
</tr>
<tr>
<td>IFN β-1α (Avonex)</td>
<td>Biogen</td>
<td>Not fully known</td>
<td>1L CIS and RMS</td>
<td>1,490</td>
</tr>
<tr>
<td>Glatiramer acetate</td>
<td>Teva/Takeda</td>
<td>Not fully known</td>
<td>1L RMS</td>
<td>1,337</td>
</tr>
<tr>
<td>IFN β-1α (Rebif)</td>
<td>Merck</td>
<td>Not fully known</td>
<td>1L CIS and RMS</td>
<td>1,290</td>
</tr>
<tr>
<td>Cladribine</td>
<td>Merck</td>
<td>Not fully known</td>
<td>2L and 3L RMS</td>
<td>606</td>
</tr>
</tbody>
</table>

Source: Frost & Sullivan Analysis & SWS Securities Research Report
Orelabrutinib (ICP-022) : Potential Best-in-class BTKi for Multiple Sclerosis (cont’d)

Initiated a randomized, double-blind, placebo-controlled and multi-center Phase II Study in lapsing-remitting multiple sclerosis patients (RRMS), which will be conducted in the U.S., China and several European countries. The trial is expected to enroll 160 patients.

Robust Pre-clinical Efficacy Profile

MS Competitive Landscape: BTKi at Clinical Stage

<table>
<thead>
<tr>
<th>Generic Name/ Drug Code</th>
<th>Company</th>
<th>MOA</th>
<th>Global Filing Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orelabrutinib</td>
<td>InnovCare</td>
<td>Irreversible</td>
<td>Phase II</td>
</tr>
<tr>
<td>SAR442168</td>
<td>Sanofi / Principia</td>
<td>Irreversible</td>
<td>Phase III</td>
</tr>
<tr>
<td>Evobrutinib</td>
<td>Merck KGaA</td>
<td>Irreversible</td>
<td>Phase III</td>
</tr>
<tr>
<td>Fenebrutinib</td>
<td>Roche</td>
<td>Reversible</td>
<td>Phase III</td>
</tr>
</tbody>
</table>

Source: Frost & Sullivan Analysis

Potential to Become Best-in-Class

- Orelabrutinib demonstrated good Brain Blood Barrier penetration in certain patients in lymphoma trials
- Better BTK target selectivity
- Better Target Occupancy
- Superior safety profile observed so far

Representative confocal microscopy images of BTK immunoreactivity in Iba1-positive microglia in brains of wild-type mice

EAE model

Clinical Score

<table>
<thead>
<tr>
<th>Days after immunization</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-022 30 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Days after immunization

Potential Competitive Landscape: BTKi at Clinical Stage

<table>
<thead>
<tr>
<th>Generic Name/ Drug Code</th>
<th>Company</th>
<th>MOA</th>
<th>Global Filing Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orelabrutinib</td>
<td>InnovCare</td>
<td>Irreversible</td>
<td>Phase II</td>
</tr>
<tr>
<td>SAR442168</td>
<td>Sanofi / Principia</td>
<td>Irreversible</td>
<td>Phase III</td>
</tr>
<tr>
<td>Evobrutinib</td>
<td>Merck KGaA</td>
<td>Irreversible</td>
<td>Phase III</td>
</tr>
<tr>
<td>Fenebrutinib</td>
<td>Roche</td>
<td>Reversible</td>
<td>Phase III</td>
</tr>
</tbody>
</table>

Source: Frost & Sullivan Analysis

Potential to Become Best-in-Class

- Orelabrutinib demonstrated good Brain Blood Barrier penetration in certain patients in lymphoma trials
- Better BTK target selectivity
- Better Target Occupancy
- Superior safety profile observed so far
Orelabrutinib (ICP-022) : Potential First-in-class BTKi for SLE

- Substantial patient size of SLE and other major autoimmune diseases (RA, MS, Psoriasis and LN)
- Robust Pre-clinical Efficacy Profile in both SLE and RA
- Phase IIa trial in combination with standard of care treatment for SLE in China to complete in end of 2021

Prevalence of SLE and Other Major Autoimmune Diseases (RA, MS, Psoriasis And LN) Expected to Grow Rapidly

Rapidly Growing SLE Market Size

Global Prevalence of SLE and Other Major Autoimmune Diseases (RA, MS, Psoriasis And LN)

SLE

Other Major Autoimmune Diseases

SLE Competitive Landscape: Orelabrutinib vs. Other BTKis

Generic Name/Drug Code	Company	Global Filing Status
Orelabrutinib | INNOCARE | Phase I (China)
Fenebrutinib | Roche | Phase II
Evobrutinib | Merck KGaA | Phase II
ABBV-105 | AbbVie | Phase II
BIIB068 | Biogen | Phase I
AC0058 | ACEA Pharma | Phase I
SN1011 | SinoMab | Phase I

NO BTKi approved for the treatment of SLE in the global market

Huge Unmet Medical Needs

Source: Frost & Sullivan Analysis
FGFR Clinical and Market Potential

Market Potential

FGFR aberrations were found in **7.1%** of all solid tumors

Source: Helsten et al., 2015, Clinical Cancer Research

FGFR Mutation by Cancer Types Globally (incidence, solid tumor), 2018–2030E

<table>
<thead>
<tr>
<th>Year</th>
<th>Other Solid Tumors</th>
<th>Breast</th>
<th>Urothelial</th>
<th>HCC</th>
<th>Gastric</th>
<th>Cholangiocarcinoma</th>
<th>Other Solid Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>1,210.7</td>
<td>52.5</td>
<td>365.5</td>
<td>151.4</td>
<td>156.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023E</td>
<td>1,370.5</td>
<td>55.3</td>
<td>404.9</td>
<td>171.1</td>
<td>180.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030E</td>
<td>1,618.6</td>
<td>59.0</td>
<td>461.0</td>
<td>201.3</td>
<td>220.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Frost & Sullivan analysis

Frequency of All Currently Known FGFR 1, 2, 3 and 4 Aberrations

- **Glioma (~8%)**
- **Non-small Cell Lung (~5%)**
- **Thyroid / FGFR2 (~5%)**
- **Blood / Myeloproliferative Syndrome / Leukemia (Ultra Orphan) (~7%)**
- **Renal Cell (~5%)**
- **Colorectal (~4%)**
- **Cholangiocarcinoma (~25%)**
- **Prostate (~32%)**
- **Urothelial (~32%)**
- **Sarcoma (~4%)**
- **Endometrial (~11%)**
- **Ovarian (~9%)**
- **Breast (~18%)**
- **Gastric / GE Junction (~7%)**

Source: Helsten et al., Clin Cancer Res 2016 (22), 257-267; FGFR2 fusions in iCCA: Graham et al. Hum Pathol 2014 (45), 1630-1638; Jain et al. JCO Precis Oncol 2018 (2) 1-12; Frost & Sullivan analysis
ICP-192: Potential Best-in-class Pan-FGFR Inhibitor

Favorable Pre-clinical Profile with Improved Target Selectivity and High FGFR Inhibition Potency

Kinase dendrogram shows improved target selectivity

Pre-clinical efficacy shown in multiple models harboring FGFR abnormalities

Source: Perera T. et al, Molecular Cancer Therapeutics 2017, 16(6), 1010-20. Doi: 10.1158/1535-7163.MCT-16-0589
Patient enrollment ongoing in Phase II clinical trials

Phase I Completed
- Two patients with FGFR gene aberrations achieved partial responses and two patients with FGFR gene aberrations achieved stable disease in the dose escalation study
- Well tolerated and no treatment-related DLT
- Dose-proportional exposure increase
- PD marker observed at 8mg QD

Trials Underway

In China
- Progressing two Phase II trials for advanced cholangiocarcinoma and urothelial cancer
- Continuing dose escalation trial in advanced solid tumors and intend to expand more indications with higher dose

In the US
- IND was approved in April 2020
- Granted as ODD by FDA for cholangiocarcinoma in June 2021
- Phase I basket trial is ongoing

One of the most advanced pan-FGFR inhibitors under clinical development in China

<table>
<thead>
<tr>
<th>Encouraging preliminary efficacy data</th>
<th>Patients with FGF/FGFR alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluable patients, n</td>
<td>12</td>
</tr>
<tr>
<td>CR, n</td>
<td>1 (8.3%)</td>
</tr>
<tr>
<td>PR, n</td>
<td>3 (25%)</td>
</tr>
<tr>
<td>SD, n</td>
<td>7 (53.8%)</td>
</tr>
<tr>
<td>DCR, %</td>
<td>91.7</td>
</tr>
</tbody>
</table>
ICP-105: Potential First-in-class FGFR4 Inhibitor

Observed good correlation between exposure and PD biomarker (C4 and FGF19) changes during dose escalation study

Robust Pre-clinical Profile

First-in-class Potential as FGFR4 inhibitor for HCC

- Currently no marketed FGFR4 inhibitors globally
- The only China-based biotech that internally discovered and developed a clinical stage FGFR4 inhibitor

Pre-clinical Results

- Superior target selectivity of (>90%) effective inhibition of FGFR4 but no other kinases
- Promising anti-tumor efficacy in HCC mouse models

ICP-105’s Clinical Program

Ongoing and Planned Trials

- Phase I trial in China as a monotherapy in solid tumor patients
- Plan to initiate a Phase II trial in HCC patients with FGFR4 pathway overactivation
- Safe and well-tolerated (from preliminary data)

Significant Market Opportunity

- HCC incidence globally: 756,972 in 2018 to ~1.0 million in 2030
- HCC incidence in China: 360,181 in 2018 to ~473,000 in 2030
- 20% of HCC patients demonstrate FGFR4 aberrant signaling

Significant Patient Base

Cost-Effective and Safe PO BID Administration
ICP-723: Second Generation pan-TRK Inhibitor

- Phase I dose escalation: no treatment related SAE or DLT for two cohorts (1-3 mg). Started 4mg dosage with TRK fusion patients and IND was approved by the U.S. FDA in August 2021.
- Two patients with qualified NTRK fusion were enrolled. One NTRK fusion positive patient in 3mg cohort reached stable disease (>20% tumor reduction) and one in 4mg cohort achieved PR at the first tumor assessment at the end of cycle 1.

Pre-clinical Results

- Superior *in vivo* and *in vitro* anti-tumor activity
- Highly selective
- Overcome acquired resistance to first generation TRK inhibitor
- Attractive PK/PD profile
- Favorable tolerability and safety profile

Distribution and frequency of NTRK fusions in adult

Cancers enriched for TRK fusions
- Frequency > 90%

Cancers harboring TRK fusions at lower frequencies
- 5% to 25%
- < 5%

1. *NTRK* fusion-positive cancers and TRK inhibitor therapy *Emiliano Cocco, Maurizio Scaltriti and Alexander Drilon*
ICP-332: Highly Selective TYK2 Inhibitor

- Good target selectivity over JAKs and promising efficacy in *in vivo* models
- Completed the first subject dosing in August 2021

Potential to Produce Blockbuster Drugs for Multi-Indications

- Regulates signaling of IL-23, IL-12, and type I IFN, contributing to the pathogenesis of various autoimmune diseases
- Developing a TYK2 inhibitor while minimizing safety issues presents a plausible strategy

Currently No Marketed TYK2 Inhibitors Globally

<table>
<thead>
<tr>
<th>Generic Name/ Drug Code</th>
<th>Company</th>
<th>Global Filing Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP-332</td>
<td>InnoCare</td>
<td>Phase I</td>
</tr>
<tr>
<td>Deucravacitinib</td>
<td>BMS</td>
<td>Phase III</td>
</tr>
<tr>
<td>Peficitinib</td>
<td>Astellas</td>
<td>Phase III</td>
</tr>
<tr>
<td>Brepocitinib</td>
<td>Pfizer</td>
<td>Phase II</td>
</tr>
<tr>
<td>OST-122</td>
<td>Oncostellae S.L, Industry</td>
<td>Phase I/II</td>
</tr>
</tbody>
</table>

Note: ClinicalTrials.gov

Pre-clinical Results

KINOMEscan Profiling

Imiquimod-induced Psoriasis Model

Rat AIA Model

Anti-CD40-induced IBD Model
Key Pre-clinical Drug Candidates

<table>
<thead>
<tr>
<th>Asset Overview</th>
<th>Indication</th>
<th>Planned IND Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP-033</td>
<td>A multi-kinase inhibitor mainly targeting DDR1 and VEGFR that inhibits angiogenesis and tumor cell invasion, normalizes abnormal blood vessels, and reverses the immunosuppressive state of the tumor microenvironment.</td>
<td>In combination with immunotherapy and other targeted therapy drugs for liver cancer, renal cell carcinoma, colorectal cancer and other solid tumors.</td>
</tr>
<tr>
<td>ICP-189</td>
<td>An oral allosteric inhibitor of SHP2 with excellent selectivity over other phosphatases. A non-receptor protein tyrosine phosphatase involved in mediating RAS signaling pathway and immune checkpoint pathway for regulation of cellular proliferation and survival.</td>
<td>Solid tumors as a single agent and/or in combinations with other antitumor agents.</td>
</tr>
<tr>
<td>ICP-488</td>
<td>A small molecule binder JH2 of TYK2. JH2 has an important regulatory role in TYK2 kinase catalytical activity, and mutations in JH2 have been shown cause of, or be linked with impaired TYK2 activity. ICP-488 is a potent and selective TYK2 allosteric inhibitor that, by binding the TYK2 JH2 domain, blocks IL-23, IL-12, type 1 IFN and other inflammatory cytokine receptors.</td>
<td>Inflammatory diseases such as psoriasis and IBD.</td>
</tr>
<tr>
<td>Asset Overview</td>
<td>ICP-490</td>
<td>ICP-248</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Indication</td>
<td>An orally small molecule inhibitor that modulates the immune system and other biological targets. By specifically binding to CRL4CRBN-E3 ligase complex, it induces ubiquitination and degradation of transcription factors including Ikaros and Aiolos.</td>
<td>A novel, orally bioavailable B-cell lymphoma-2 (BCL-2) selective inhibitor. By increasing metabolic stability and reducing impact on liver drug enzymes, ICP-248 to be more suitable for combinational therapies. We are confident that the combination of ICP-248 and Orelabrutinib will overcome resistance seen in existing BCL-2 inhibitors.</td>
</tr>
<tr>
<td></td>
<td>Relapsed/refractory multiple myeloma, diffuse large B cell lymphoma (DLBCL) and autoimmune diseases.</td>
<td>Combination of ICP-248 and Orelabrutinib for the treatment of ALL, AML, FL, CLL, DLBCL and other hematological malignancies.</td>
</tr>
<tr>
<td>Planned IND Application</td>
<td>First half of 2022</td>
<td>First half of 2022</td>
</tr>
<tr>
<td>Key Pre-clinical Drug Candidates (cont’d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-B02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ CD20xCD3 bispecific antibody co-developed with Keymed Biosciences Inc. (2162.HK) via a 50:50 Joint Venture, which demonstrated stronger TDCC activities with less cytokine release as compared to its leading competitors in preclinical studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Treatment of lymphoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Accepted in July 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP-915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ A highly potent, selective small-molecule inhibitor against the G12C mutant form of Kirsten Rat Sarcoma viral oncogene homologue (“KRAS”)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Combined other receptor tyrosine kinase (“RTK”) inhibitors (ICP-192, ICP-033) or SHP2 inhibitor (ICP-189), ICP-915 may be developed as a cornerstone molecule for combinatory treatments of KRAS mutant solid tumors by tackling multiple modules of the RTK-RAS-MAPK signaling pathway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Second half of 2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 more INDs to be submitted in the remainder of 2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
科学驱动创新 患者所需为本
Science Drives Innovation for the Benefit of Patients